湿法氧化提取水中碳的方法优化

李 磊^{1,2} 刘 卫² 马玉华² 李志强¹ 邓 珂² 曾林林² 徐 勇¹ 1(衡阳师范学院 衡阳 421010) 2(中国科学院上海应用物理研究所 上海 201800)

摘要 水中碳的提取是液闪谱仪测量环境水中¹⁴C的重要预处理步骤。本研究采用过硫酸钠与Fenton试剂相 结合的湿法氧化体系以及磷酸酸化、氮气鼓泡的方法,对体积10L已知碳组分(去离子水+蔗糖)和未知碳组分 的两种水样进行湿法氧化碳提取的实验,同时对未知碳组分水样进行湿法氧化与185 nm 紫外氧化相结合的碳 提取实验。通过实验确定试剂最佳投放时间与顺序,优化试剂投放量及配比。在优化条件下,90 ℃水温反应 3h后,已知碳组分(去离子水+蔗糖)的有机碳提取率高于96%;未知碳组分的水中总碳提取率为(96.8±0.3)%, 其中无机碳的提取率>98.5%、有机碳提取率为(93.4±0.2)%,其中单宁酸类有机物氧化率仅有(88±0.2)%。湿法 氧化+185 nm 紫外氧化联用后,未知碳组分的总碳提取率提升至(98.3±0.5)%,其中无机碳提取率≥99%、有机碳 提取率达到(95.6±1.4)%。由此表明,湿法氧化法不能用典型有机物的碳回收率来代表实际水样中的碳回收率, 湿法氧化与185 nm 紫外氧化联用是水中碳提取的更好方法。

关键词 水中¹⁴C,湿法氧化,紫外,有机碳,无机碳

中图分类号 TL751

DOI: 10.11889/j.0253-3219.2024.hjs.47.030303

Optimization of carbon extraction from water by wet oxidation

LI Lei^{1,2} LIU Wei² MA Yuhua² LI Zhiqiang¹ DENG Ke² ZENG Linlin² XU Yong¹ 1(Hengyang Normal University, Hengyang 421010, China)

2(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract [Background] Extraction of carbon from water is a crucial preprocessing step for measuring ¹⁴C in environmental waters using liquid scintillation spectrometry. **[Purpose]** This study aims to explore the optimal technological conditions for extracting carbon from water using wet oxidation method. **[Methods]** A wet oxidation system combining sodium persulfate and Fenton's reagent, along with phosphoric acid acidification and nitrogen bubbling, were employed for the wet oxidation carbon extraction experiments on two types of water samples with known (deionized water + sucrose) and unknown carbon components, each with a volume of 10 L. Simultaneously, carbon extraction experiments were conducted on the water samples having unknown carbon component, using a combination of wet oxidation and 185 nm ultraviolet (UV) oxidation so as to determine the optimal timing and sequence of reagent addition, as well as the optimized reagent dosage and ratio. Further experiments under optimized conditions, after a 3-h reaction at 90 °C, the organic carbon extraction rate for the known carbon component (deionized water + sucrose)

上海市青年科技英才扬帆计划项目(No.22YF1457800)资助

第一作者:李磊,男,1999年出生,2021年毕业于中南林业科技大学,现为硕士研究生,主要研究水中¹⁴C测量方法

通信作者:马玉华, E-mail: mayuhua@sinap.ac.cn; 李志强, E-mail: hysylzg@126.com

收稿日期: 2023-11-17, 修回日期: 2024-01-25

Supported by Shanghai Sailing Program (No.22YF1457800)

First author: LI Lei, male, born in 1999, graduated from Central South University of Forestry and Technology in 2021, master student, focusing on ¹⁴C measurement methods in water

Corresponding author: MA Yuhua, E-mail: mayuhua@sinap.ac.cn; LI Zhiqiang, E-mail: hysylzq@126.com

Received date: 2023-11-17, revised date: 2024-01-25

exceeds 96%. The total carbon extraction rate from the unknown carbon component water is (96.8 ± 0.3) %, with an inorganic carbon extraction rate >98.5%, and an organic carbon extraction rate of (93.4 ± 0.2) %, while the oxidation rate of tannic acid-type organic compounds is only (88 ± 0.2) %. After the combination of wet oxidation and 185 nm UV oxidation, the total carbon extraction rate for the unknown carbon component increases to (98.3 ± 0.5) %, with an inorganic carbon extraction rate $\geq 99\%$ and an organic carbon extraction rate that can reach (95.6 ± 1.4) %. **[Conclusions]** Results of this study indicate that wet oxidation alone cannot represent the carbon recovery rate in actual water samples using typical organic compound carbon recovery rates. The combination of wet oxidation and 185 nm UV oxidation proves to be a more effective method for carbon extraction from water.

Key words ¹⁴C in water, Inorganic carbon, Organic carbon, Ultraviolet, Wet oxidation

¹⁴C是核设施流出物的主要放射性核素之一^[1-3], 随着日本福岛第一核电站拟向太平洋排放超过120 万吨核污染水事件的发生,水中¹⁴C的测量越来越重 要^[4-5]。精确测定水样¹⁴C含量需要耗时的化学程序 和复杂的分析设备,液闪谱仪是测量分析¹⁴C最常用 的仪器^[6-7]。由于 Suess 效应的稀释使得自然环境中 的¹⁴C活度较低^[8],而环境水样中的溶解碳浓度一般 只有数十mg·L⁻¹,这意味着需要大体积的水样才能 制备出可供液闪谱仪测量的足量的¹⁴C样品。同时, 由于水体中碳元素的化学形态多样,为了保证液闪 测量的可靠性与一致性,要将水中碳元素统一转化 为高纯度的CO,后进行测量。通过强酸置换弱酸的 原理即可实现将水中无机碳转化成CO,;而有机碳 的氧化方式更为复杂,有机碳预处理的常用方法有 湿法氧化(Wet Oxidation, WO)和高温催化氧化 (High-Temperature Catalytic Oxidation, HTCO)^[9-10]. Wang 等^[11]基于HTCO开发了一套¹⁴C自动化制备方 案,但仅用于较高活度的核电厂液态流出物,并不适 用于低活度、低浓度环境水的¹⁴C测量。湿法氧化的 原理是利用氧化剂和活化剂产生以硫酸根自由基 (SO, -•)和羟基自由基(•OH)为主的强氧化性自由 基,与水样中的有机物发生反应使其化学键断裂,最 终将有机化合物矿化为CO,和H,O^[12],因进样量大 等优点更适用于低活度、低浓度的环境水中¹⁴C的测 量。Magnusson等^[13]和Ahn等^[14]采用过硫酸钾-硝酸 银氧化体系,研究了应用于核设施液态流出物的¹⁴C 分析方法,该体系适合将简单有机物氧化成CO,。 Anipsitakis 等^[15]报道了Ag⁺是活化过硫酸盐效果最 好的过渡金属离子。Huang等^[16]采用H₂SO₄、K₂S₂O₈ 和Fenton体系试剂作为湿法氧化剂,提出了一种环 境水中¹⁴C的分析方法,对几种典型有机和无机材料 进行了效率验证。但环境水体中碳的形态是复杂多 样的,很多研究者在验证湿法氧化的效率时,采用单 一的蔗糖、苯醌等有机物与去离子水配制实验水样, 呈现的结果往往不能真实反映其处理环境水样的 能力。

针对上述情况,基于湿法氧化对已知和未知碳 组分水样中的碳进行提取,优化条件,形成一套可用 的、高提取效率的、新型湿法氧化水中碳提取方法, 服务于水中¹⁴C的精准测量。以地表水作为典型环 境水样展开研究,建立了一套单次水样处理量10L 的自动化湿法氧化装置,优化提取水中碳的实验平 台。在加热-Ag⁺多重活化Na₂S₂O₈氧化体系的基础 上增加了Fe²⁺/H₂O₂的经典Fenton体系以提高应对复 杂环境水中碳的能力。优化试剂选型用量配比及投 放顺序等实验条件后,确定了该方案对真实湖水中 有机碳和无机碳的提取效率,可应用于环境水体 的¹⁴C液闪样品制备。在对200 mL水样进行湿法氧 化+紫外氧化的研究实验中发现,Na₂S₂O₈氧化体系 结合紫外光的有机碳氧化率更高。

1 实验部分

1.1 实验装置

湿法氧化装置的示意图如图1所示。以西门子 S7-200smart 为主控制器,集成串口通讯并通过配置 其他IO硬件完成了工艺参数的测量与控制。控制 系统包括水温实时测量、水样定量抽取控制、加热和 制冷控制、氮气流量控制、各电磁阀启停、触摸屏人 机交互界面等。反应釜是一个13L的高硼硅四颈 圆底烧瓶,颈口分别用作进出水口、氮气入口、载气 出口,试剂投放口。水样体积以称重法确定,具有 RS485通讯接口的电子秤连接 PLC (Proportional-Integral-Derivative),通过 modbus-rtu 协议读取重量 并显示在触摸屏上,根据重量变化进而控制两个水 泵定量抽取水样,同时提供了进出水时间设置功能, 以便按需清洗反应釜。氮气入口连接流量控制器, 通过与PLC 通讯实现了在上位机触摸屏上对氮气 流速的调节,同时使用电磁阀控制气路的通断。载 气出口连接一根长冷凝管,使蒸汽凝结并返回反应 釜,冷却水由压缩机制冷器提供,反应釜安装在带磁 力搅拌功能的电热套上。在上位机设置相应参数,

通过两组温度传感器和内嵌PID (Proportion Intergration Differentiation)算法的智能温控仪,实时采集水温并调节加热套和制冷器的功率,即可将水样和冷却水控制在最佳反应温度。当反应条件满足设定的阈值时,控制试剂投放口处的耐腐蚀PTFE

电磁阀自动打开,按步骤往漏斗投加试剂流入反应 釜后自动关闭,维持温度和氮气吹扫等条件直至湿 法氧化反应过程结束。湿法氧化产生的CO2由载气 鼓泡吹扫出来,装置出气口可连接相应的碱液吸收 瓶来完成CO2的收集。

Nitrogen Cylinder; 2.Pressure Relief Valve; 3.Gas Flow Controller; 4.Electromagnetic Valve;
 5.Electronic Scale; 6.Fluorinated Barrel; 7.Water Pump; 8.Reaction Vessel; 9.Heating Mantle;
 10.Condenser; 11.Separatory Funnel; 12.PTFE Electromagnetic Valve; 13.Compressor Cooler;

图1 湿法氧化装置示意图 Fig.1 Schematic of the wet-oxidation system

1.2 主要试剂和仪器

两种实验水样:自配标准水(去离子水+蔗糖), 碳含量25 mg·L⁻¹;上海市嘉定区某处湖水(静置后 过滤杂质),无机碳(Inorganic Carbon, IC)含量为 24.97~27.22 mg·L⁻¹,有机碳(Total Organic Carbon, TOC)含量为9.08~16.03 mg·L⁻¹。

主要试剂:高纯氮气(99.999%);去离子水; H₃PO₄(98%分析纯);Na₂S₂O₈(分析纯);AgNO₃(分析 纯);FeSO₄·7H₂O(分析纯);H₂O₂(30%分析纯);蔗 糖(分析纯)。

主要仪器:TOC-L CPH型总有机碳分析仪,日本岛津;CPA223S电子天平,赛多利斯;单道可调移 液器,全固;pH笔式酸度计,柯迪达;Bruker SolariX型FT-ICR-MS(傅里叶变换离子回旋共振质谱仪),美国布鲁克;185 nm紫外灯,朗普。

1.3 实验方法

1.3.1 湿法氧化实验步骤

1)取水样置于电子秤上的氟化桶中,并收集适量反应前水样用于测量碳含量及组分。

2)设置装置参数为:进水量10L,加热炉温度 90 ℃,制冷温度5 ℃,氮气吹扫流速 1000 mL·min⁻¹,吹扫时间900 s,排水时间500 s,清 洗进水时间450 s,加热反应温度90 ℃,制冷反应温 **度5℃**。

3)打开吹扫开关,通入氮气排出容器内空气以 控制本底,再将吹扫流速重设为300 mL·min⁻¹。

4)点击开始按钮,待装置自动将水样从氟化桶 抽入反应釜内并完成水温调整的过程,以电子秤重 量差值控制进样截止时间。

5)水样加热至90 ℃且冷却水降至5 ℃以下时, 耐酸碱电磁阀自动打开,依次从溶液漏斗向反应釜 内投加相应化学试剂后关闭,同时气路电磁阀自动 打开,以300 mL·min⁻¹的流量向水底通入氮气鼓泡, 磁力搅拌子辅助混匀水样并增加气泡数量。

6)反应3h后在出水口处用收集瓶收集反应后 的水样用于后续测量,并通入清水重复清洗反应釜 以防交叉污染。

1.3.2 碳含量和有机物组分氧化率的确定

总有机碳分析仪(TOC-L CPH)测量水样处理 前后的总碳(Total Carbon,TC)、IC和TOC含量^[17], 超高分辨率傅里叶变换离子回旋共振质谱仪 (Bruker SolariX型FT-ICR-MS)得到水样中溶解性 有机物的组分。以水样处理后的最终碳含量与初始 碳含量之间的比值来确定碳组分的提取率:

$$\eta = 100\left(1 - \frac{C_1(V_1 + V_2)}{C_2 \times V_1}\right) \times \%$$
(1)

式中:n为水样中碳组分的提取效率;C1为反应后水

样中碳组分的含量,mg·L⁻¹; V_1 为水样体积,L; V_2 为 试剂溶液和冲洗管道用水的总投加量,L; C_2 为反应 前水样中碳组分的含量,mg·L⁻¹。

2 结果与讨论

2.1 试剂添加方式对碳转化率的影响

湿法氧化过程中试剂的添加方式对碳转化效率 会产生影响^[18],本研究对不同添加试剂的时间顺序 进行了对比实验。对于水中无机碳的提取,常使用 磷酸或硫酸将水样酸化至pH为1~3,综合操作安全 性和裝置器件耐用性等方面考虑,本方法采用磷酸。 取 10 L 水样进行酸化预实验,当磷酸(98%分析纯) 添加量为45 mL时,常温下酸度计测量的 pH结果达 到 2 以下,随着水温的升高 PH 值还会进一步降低, 能够满足无机碳的反应条件。据文献[13] 拟定其他 试剂用量为:110 mL Na₂S₂O₈ 溶液(400 g·L⁻¹)、 45 mL AgNO₃溶液(0.1 mol·L⁻¹)、25 mL H₂O₂溶液 (30%分析纯)、45 mL FeSO₄溶液(0.2 mol·L⁻¹)。为 了确定试剂添加方式对碳转化效率的影响,本研究 设计三种实验方式(表 1),其实验结果如图 2 所示。

表1 三种不同的试剂添加方式 Table 1 Three different ways to deliver reagents

方式	试剂添加的时间与顺序
Method	Time and order of reagent addition
1	加入磷酸反应2.5h后,按Na ₂ S ₂ O ₈ 、AgNO3、H ₂ O ₂ 、FeSO4的顺序依次加入继续反应2.5h
	After adding phosphoric acid for 2.5 h, Na ₂ S ₂ O ₈ , AgNO ₃ , H ₂ O ₂ , FeSO ₄ were added in order to continue reaction for 2.5 h
2	加入微量磷酸调节水样 pH 至 7,按 FeSO ₄ 、 H_2O_2 、 $Na_2S_2O_8$ 、AgNO ₃ 的顺序依次加入反应 1.5 h 后,再加入磷酸继续反应
	2 h Add a trace amount of phosphoric acid to adjust the pH of the water sample to 7, and then add FeSO4, H2O2, Na2S2O8,
	AgNO ₃ successively for 1.5 h, and then add phosphoric acid for another 2 h
3	依次加入磷酸、Na ₂ S ₂ O ₈ 、AgNO ₃ 、FeSO ₄ 、H ₂ O ₂ 后反应3h(其中每种试剂添加的间隔用20mL去离子水冲洗试剂投放管
	$ \text{ii})H_3PO_4 $, $Na_2S_2O_8$, $AgNO_3$, $FeSO_4$ and H_2O_2 were added successively and reacted for 3 h (20 mL of deionized water was
	used to flush the reagent delivery pipe at the interval of each reagent addition)

方式②的无机碳转化效率为63.3%,方式①和 ③>99%。影响无机碳转化率的决定因素是水样的 酸度,由于三种方式的磷酸用量水平一致,只是反应 时间不同,方式②为2h,方式①和③均为3h,表明 酸化反应及鼓泡驱气时间为2h不足以充分提取水 中无机碳,3h为最佳反应时间。比较三种方式的有 机碳氧化反应条件及结果(表1和图2):从表1得 知,方式②的有机碳氧化反应初始pH=7,方式①和 方式③因先添加的磷酸使其氧化反应发生在pH<2 的酸性环境;从图2得到,方式②有机碳氧化效率仅 有75%,低于方式①的84.2%和方式③的89.1%。由 此表明酸性条件有利于硫酸根自由基(SO4-)的生 成及其对有机物的氧化,这与Deng等^[19]的结论类 似,同时H₂O₂也更适应于酸性反应条件^[20]。此外, 方式②和方式③有机碳氧化效率差距较大的原因还 与Na₂S₂O₈氧化体系与Fenton体系的添加先后顺序 有关,先加Na₂S₂O₈再加Fenton试剂更有利于氧化反 应的进行。对比方式①和方式③发现,H₂O₂和Fe²⁺ 的添加顺序也对有机碳的氧化有影响,先投放Fe²⁺ 更有利于H₂O₂的分解,从而提高有机碳的氧化效 率。为了防止各试剂在与水样混合接触之前发生反 应,影响试剂的氧化能力,在方式③增加了每次投加 试剂的间隔用去离子水润洗的步骤。以方式③添加 试剂,能够有效缩短实验时间,也提高了水中碳的提 取效率。

2.2 正交实验优化试剂用量配比

正交实验设计是利用规格化的正交表从部分实 验了解全面实验的情况,来确定使实验指标达到最 佳的因素水平组合^[21]。本研究通过正交实验筛选该 湿法氧化体系中各试剂的最佳用量配比,以使用的 5种试剂用量为探究因素,未知碳组分环境水中有 机碳的氧化效率为探究指标,在预实验的试剂用量 值附近分别对各试剂的用量选取4个等距值来组成 不同配比。根据L₁₆(4⁵)的正交表进行16组实验,实验结果如表2和图3所示。

结果表明, $Na_2S_2O_8$ 的用量对有机碳的氧化效率 影响最显著,各试剂用量的影响大小顺序为 $Na_2S_2O_8$ > H_2O_2 >FeSO₄> H_3PO_4 >AgNO₃。Fenton试剂的加入能 够有效提升氧化效率,原因可能是 H_2O_2 产生的羟基 自由基(•OH)可以与 $S_2O_8^2$ 裂解产生的硫酸根自由 基(SO_4^{-} •)互相激发,通过多重协同进攻机制降解有 机物;同时Fe²⁺也能作为过渡金属离子活化过硫酸 钠,促进 SO_4^{-} •的形成。当 H_2O_2 的用量增至第4个水 平时,氧化效率都呈现降低的趋势,可能是因为过量 的 H_2O_2 会与 SO_4^{-} •竞争消耗。5个因素的最佳配比为 $A_4B_3C_4D_4E_3$,不在正交表设置的16组实验当中,由此 补做一组实验,实验得到其有机碳氧化效率为 (93.4±0.2)%,验证了该用量配比最优的假设。10 L 水样对应的最佳试剂用量为:磷酸45 mL(98%)、过 硫酸钠 170 mL (400 g·L⁻¹)、硝酸银 65 mL (0.1 mol·L⁻¹)、七水合硫酸亚铁 3.5 g、过氧化氢 25 mL (30%)。优化湿法氧化法实验条件后形成了 一套标准的流程如图4所示。

2.3 水中有机物组分的氧化分析

用优化后的湿法氧化条件对已知碳组分(去离 子水+蔗糖)的自配标准水和未知碳组分的环境水样 进行碳提取实验,其结果如表3所示,自配标准水 (碳含量25 mg·L⁻¹)的碳提取率>96%;未知碳组分 的有机碳提取率为(93.4±0.2)%,表明模拟水样并不 能表征湿法氧化对实际环境水样的碳提取效果。从 表3还可以看出,环境水样中6类溶解性有机物的提 取率,其中含量较多的木质素类和稠环化合物类,提 取率均>95%,而单宁酸类有机物的氧化率仅有 (88.4±0.2)%,这可能与单宁酸的抗氧化特性有关。

	表2 正交实验筛选试剂最佳用量配比
Table 2	Orthogonal test for screening the optimal amount and ratio of reagents

实验号 Number of experiment	A Na ₂ S ₂ O ₈	$B H_2O_2$	C AgNO ₃	D FeSO ₄	$E H_3 PO_4$	氧化效率 Ovidation afficiancy / %
	18 49	14 69		0.18	25.35	81 89+0 45
2	18.49	19.58	0.25	0.54	50.70	85.73±0.27
3	18.49	24.48	0.45	0.90	76.05	89.10±0.37
4	18.49	29.37	0.65	1.26	101.4	88.04±0.26
5	21.85	14.69	0.25	0.90	101.4	90.95±0.40
6	21.85	19.58	0.05	1.26	76.05	91.85±0.28
7	21.85	24.48	0.65	0.18	50.70	92.81±0.20
8	21.85	29.37	0.45	0.54	25.35	83.29±0.43
9	25.21	14.69	0.45	1.26	50.70	91.68±0.38
10	25.21	19.58	0.65	0.90	25.35	90.86±0.30
11	25.21	24.48	0.05	0.54	101.4	88.53±0.24
12	25.21	29.37	0.25	0.18	76.05	87.58±0.44
13	28.57	14.69	0.65	0.54	76.05	92.44±0.24
14	28.57	19.58	0.45	0.18	101.4	91.67±0.36
15	28.57	24.48	0.25	1.26	25.35	91.88±0.30
16	28.57	29.37	0.05	0.90	50.70	89.17±0.42
\bar{T}_1	86.19	89.24	87.86	88.49	86.98	
\overline{T}_2	89.73	90.02	89.03	87.50	89.85	
\overline{T}_3	89.66	90.58	88.93	90.02	90.24	
\overline{T}_4	91.29	87.02	91.04	90.86	89.80	
L	4	3	4	4	3	
R	5.1	3.56	3.18	3.37	3.27	

注: \bar{T}_i 表示各试剂第i个用量的4次实验氧化效率的均值:L表示各试剂第几个用量值对应的氧化效率均值最高:极差值 $R=\max(\bar{T}_i)-\min(\bar{T}_i)$,反 映该因素对实验结果的影响程度,即R值越大该试剂的用量对有机碳的氧化效率影响就越大

Notes: \overline{T}_i represents the mean of the oxidation efficiency of the 4 experiments with the *i* dosage of each reagent; *L* represents the highest average oxidation efficiency corresponding to the number of dosage values of each reagent; the range $R = \max(\overline{T}_i) - \min(\overline{T}_i)$ reflects the degree of influence of this factor on the experimental results, the greater the *R* value, the greater the influence of the amount of this reagent on the oxidation efficiency of organic carbon

图3 各因子在各水平下的氧化效率均值随水平的变化 Fig.3 Variation of mean oxidation efficiency of each factor at each level with the level

单宁酸类 Tannin

木质素类Lignose

稠环化合物Condensed nucleus compounds

2.4 紫外-湿法氧化的碳转化分析

Yang等^[22]的研究结果显示紫外-过硫酸盐氧化 法对单宁酸类有机物的氧化效果较好,因此本研究 在对200 mL水样进行湿法氧化的实验中引入了 185 nm 紫外光照射,实验结果如表4所示。在 Na,S,O,-Fenton 双氧化体系中加紫外后,有机碳转化 率为(91.4±1.1)%,低于单湿法氧化的93.4%(表3); 在Na,S,O,单氧化剂体系加紫外氧化的实验中,有机 碳转化率均值为(95.6±1.4)%,优于湿法氧化的 93.4%(表3)。其原因可能是双氧化体系中,Na,S,O。 和H₂O₂在紫外光活化作用下,影响了其产生自由基 的速率,导致部分SO₄-•和•OH相互反应消耗自由基 的量。

 88.4 ± 0.2

99.6±0.2

95.0±0.2

图4 优化后的湿法氧化流程图 Fig.4 Flow chart of optimized wet oxidation

Table 3 Extraction rate of organic carbon and partial organic components in the experimental water sample					
水样类型	有机物类型	分子数量占比	氧化效率		
Type of water sample	Type of organic matter	Proportion of molecule / %	Oxidation efficiency / %		
自配标准水	蔗糖Sucrose	_	>96		
Own standard water					
环境水	总有机物Total organic compounds	_	93.4±0.2		
Environmental water	碳水化合物类Carbohydrate	0.08	94.5±0.6		
	类蛋白类Proteinoid	3.85	97.6±0.3		
	脂质类Lipoid	2.74	97.7±0.4		

6.15

23.9

33.8

表4 紫外-湿法氧化联用的有机碳转化率

Table 4	Transformation efficiency of organic carbon after combined use of ultraviolet and wet oxidation

实验号	试剂用量配比 Reagent dosage and ratio					效率
Number of experiment	$\overline{\mathrm{H}_{3}\mathrm{PO}_{4}(98\%)}$	Na ₂ S ₂ O ₈	$AgNO_3(0.1 \text{ mol} \cdot L^{-1})$	$FeSO_4 \cdot 7H_2O$	$H_2O_2(30\%)$	Efficiency / %
	/ mL	/ g	/ mL	/ g	/ mL	
1	1.2	1.36	1.3	0.07	0.5	91.4±1.1
2	1.3	1.6	1.4	_	_	94.2
3	1.3	1.6	1.4	_	_	96.9
4	1.3	1.6	1.4	_	_	95.7

3 结语

该研究对模拟水样和实际的环境水样开展了不同条件的水中碳提取实验,实验结果表明,试剂添加 顺序和时间对水中碳的提取效率有显著影响,在优 化了试剂添加方式后,通过正交试验的方法筛选出 了各试剂的最佳用量配比。采用优化后的条件处理 10L环境水样,无机碳和有机碳的提取效率分别达 到>98.5%和(93.4±0.2)%;针对单一湿法氧化法对 有机碳,特别是单宁酸类有机物提取率低的问题,在 单一湿法氧化法中添加紫外氧化,有效地提高了有 机碳提取率,使其从(93.4±0.2)%提升至(95.6± 1.4)%。

作者贡献声明 李磊负责设计和实施实验、分析数据,以及论文的起草、修改等主要工作;刘卫负责进展把控和文章内容的审阅指导;马玉华、李志强、邓 珂提供了研究经费和技术、设备支持,以及审阅文章 的知识性内容;曾林林、徐勇负责了实验水样的采集 处理以及参考文献的搜集和整理。

参考文献

- 1 甄丽颖,张家俊,林颖慧,等.直接测量法测量核电厂气态流出物¹⁴C的准确度分析[J].核技术,2022,45(9): 090301.DOI: 10.11889/j.0253-3219.2022.hjs.45.090301. ZHEN Liying, ZHANG Jiajun, LIN Yinghui, *et al.* Analysis of the accuracy of ¹⁴C in gaseous effluent of nuclear power plant by direct measurement method[J]. Nuclear Techniques, 2022, 45(9): 090301.DOI: 10.11889/ j.0253-3219.2022.hjs.45.090301.
- 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测 的关键核素研究[J]. 核安全, 2020, 19(5): 27 - 34. DOI: 10.16432/j.cnki.1672-5360.2020.05.006.
 HUANG Yanjun, SHA Xiangdong, ZHU Zhaowen, et al.

Study on key nuclides of effluent monitoring in pressurized water reactor nuclear power plant[J]. Nuclear Safety, 2020, **19**(5): 27 – 34. DOI: 10.16432/j.cnki.1672-5360.2020.05.006.

- 3 Zhang G Q, Wang S, Zhang H Q, et al. Radionuclides in primary coolant of a fluoride salt-cooled high-temperature reactor during normal operation[J]. Nuclear Science and Techniques, 2017, 28(3): 41. DOI: 10.1007/s41365-017-0186-y.
- 4 Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima Daiichi nuclear plant[J]. Marine Pollution Bulletin, 2021, 169: 112515. DOI: 10.1016/j.

marpolbul.2021.112515.

- 5 Feng B, Zhuo W H. Levels and behavior of environmental tritium in East Asia[J]. Nuclear Science and Techniques, 2022, 33(7): 86. DOI: 10.1007/s41365-022-01073-3.
- 6 Stojković I, Todorović N, Nikolov J, *et al.* Investigation of fast screening LSC method for monitoring ¹⁴C activity in wastewater samples[J]. Radiation Measurements, 2019, **121**: 1 – 9. DOI: 10.1016/j.radmeas.2018.12.004.
- 7 郭贵银,黄彦君,张兵,等.用湿法氧化预处理进行水中¹⁴C分析研究[J].辐射防护,2015,35(6):339-344.
 GUO Guiyin, HUANG Yanjun, ZHANG Bing, *et al.* Analysis of ¹⁴C in environmental water based on wet-oxidation pretreatment[J]. Radiation Protection, 2015, 35 (6): 339-344.
- Molnár A, Molnár M, Veres M, *et al.* Determination of the total ¹⁴C concentration of water samples using the COD method and AMS[J]. Radiocarbon, 2022, 64(5): 1065 1074. DOI: 10.1017/RDC.2022.42.
- 9 孟莉萍, 保莉, 杨海兰, 等. 水中¹⁴C的样品制备与分析 方法研究[J]. 环境科学与管理, 2017, **42**(8): 139 - 142. DOI: 10.3969/j.issn.1673-1212.2017.08.029. MENG Liping, BAO Li, YANG Hailan, *et al.* Preparation and analysis of radiocarbon in water sample[J]. Environmental Science and Management, 2017, **42**(8): 139 - 142. DOI: 10.3969/j.issn.1673-1212.2017.08.029.
- Yoon G, Park S M, Yang H, *et al.* Selection criteria for oxidation method in total organic carbon measurement[J]. Chemosphere, 2018, **199**: 453 458. DOI: 10.1016/j. chemosphere.2018.02.074.
- 11 Wang X W, Wang R D, Liang M C, et al. Hightemperature catalytic oxidation preparation and liquid scintillation counting determination of the carbon-14 in liquid effluent samples from nuclear power plants[J]. Chinese Journal of Analytical Chemistry, 2023, 51(4): 100218. DOI: 10.1016/j.cjac.2022.100218.
- 12 王庆宏,李思雨,牛皓,等.活化过硫酸盐氧化处理难降 解废水的技术研究进展[J].工业水处理,2022,42(8):8 - 16,26. DOI: 10.19965/j.cnki.iwt.2021-0637.
 WANG Qinghong, LI Siyu, NIU Hao, *et al.* An overview of activated persulphate oxidation processes in treatment of refractory wastewaters[J]. Industrial Water Treatment, 2022, 42(8): 8 - 16, 26. DOI: 10.19965/j.cnki.iwt.2021-0637.
- 13 Magnusson Å, Stenström K. ¹⁴C produced in Swedish nuclear power reactors – measurements on spent ion

exchange resins, various process water systems and ejector off-gas[R]. Sweden: Lund University, Department of Nuclear Physics, 2005.

- 14 Ahn H J, Song B C, Sohn S C, *et al.* Application of a wet oxidation method for the quantification of ³H and ¹⁴C in low-level radwastes[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2013, **81**: 62 66. DOI: 10.1016/j.apradiso.2013.03.059.
- 15 Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science & Technology, 2004, 38(13): 3705 3712. DOI: 10.1021/es0351210.
- Huang Y J, Guo G Y, Wu L S, *et al.* An analytical method for ¹⁴C in environmental water based on a wet-oxidation process[J]. Journal of Environmental Radioactivity, 2015, 142: 1 8. DOI: 10.1016/j.jenvrad.2014.12.016.
- 常慧敏,杨青惠,齐翔.TOC-L总有机碳分析仪测定总 17 有机碳的实验方法[J]. 科技创新与生产力, 2017(11): 118 - 120. DOI: 10.3969/j.issn.1674-9146.2017.11.118. YANG Qinghui, QI CHANG Huimin, Xiang. Experimental method of total organic carbon determination based on TOC-L analyzer[J]. Sci-Tech Innovation and Productivity, 2017(11): 118 - 120. DOI: 10.3969/j.issn.1674-9146.2017.11.118.
- 18 许志至,徐岗,蒋素英,等.过硫酸钠与双氧水催化降解 印染废水的试验研究[J].工业水处理,2016,36(5):32

- 35.

XU Zhizhi, XU Gang, JIANG Suying, *et al.* Study on the catalytic degradation of dyeing wastewater by sodium persulfate and hydrogen peroxide[J]. Industrial Water Treatment, 2016, **36**(5): 32 - 35.

- 19 Deng Y, Ezyske C M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate[J]. Water Research, 2011, 45(18): 6189 - 6194. DOI: 10.1016/j.watres.2011.09.015.
- 20 刘中华. 过氧化氢/过硫酸盐体系氧化降解土壤中有机 污染物的研究[D]. 济南: 济南大学, 2017.
 LIU Zhonghua. Oxidative degradation of organic pollutants in soil by hydrogen peroxide/persulfate system
 [D]. Jinan: University of Jinan, 2017.
- 21 郝拉娣, 于化东. 正交试验设计表的使用分析[J]. 编辑 学报, 2005, 17(5): 334 - 335. DOI: 10.16811/j.cnki.1001-4314.2005.05.009.

HAO Ladi, YU Huadong. On use of orthogonal experimental design[J]. Acta Editologica, 2005, 17(5): 334
- 335. DOI: 10.16811/j.cnki.1001-4314.2005.05.009.

Yang H K, Graham N J D, Wang W Y, *et al.* Evaluating and improving the reliability of the UV-persulfate method for the determination of TOC/DOC in surface waters[J]. Water Research, 2021, **196**: 116918. DOI: 10.1016/j. watres.2021.116918.